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Summary. A coset representation (G(/Gi)), which is defined algebraically by a 
coset decomposition of a finite group G by its subgroup Gi, is shown to be a 
method for the decomposition of a regular body into its point group orbits. This 
proof also shows that each member of the G(/GI) orbit belongs to the G,. 
site-symmetry. In addition, a general equation concerning the multiplicities of 
such coset representations is derived and shown to involve Brester's equations 
and the k-value equations of framework groups as special cases. The relationship 
of the coset representation and the site-symmetry affords a general procedure for 
obtaining symmetry adapted functions. 
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1. Introduction 

The construction of symmetry adapted linear combinations (SALCs) of basis 
functions is one of the most important applications of group theory in chemistry 
[ 1, 2]. For constructing SALCs, a standard method utilizes projection operators 
after reducing a matrix representation into irreducible representations [1]. In 
recent years, several alternative procedures have been suggested to obtain SALCs 
of highly symmetric non-axial groups. For example, Flurry has reported the use 
of site-symmetry [3, 4]. Stone has presented the tensor surface harmonic (TSH) 
theory, which is appropriate for the generation of SALCs [5], Quinn et al. have 
determined a-characters as permutation characters, which are then utilized for 
the construction of a-, n-, and 6-type SALCs [6-8]. Ceulemans has described an 
essentially equivalent method [9]. According to these methods, the total set of 
fragments (or atoms) appearing in a molecule is resolved into orbits containing 
equivalent fragments, where each orbit is characterized by a site-symmetry 
group. This characterization contains at least three steps: (1) the resolution 
into such orbits, (2) the decomposition of permutation characters, and (3) 
the assignment of the site-symmetry group. These steps are not trivial especially 
for highly symmetric non-axial groups. In particular, the first task can be 
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complicated if Brester's method is used [10]. Moreover, step 3 has not been 
systematized sufficiently to stimulate general applications. 

In previous papers, we have used coset representations (CRs) and their 
subductions to enumerate organic compounds [13-18] and to classify molecular 
symmetry [19]. The coset representations (CRs) are obtained directly by examin- 
ing the multiplication tables of groups. The relationship between the CRs and 
orbits has been proven for the enumeration; however, a more comprehensive 
discussion is required for the application of this approach to the construction of 
SALCs. In this paper, the chemical and geometrical meanings of CRs and their 
relationship to orbits are presented. This analysis reveals the inherent identities 
of Brester's method [10], the so-called k-values in framework groups [20], the 
a-character technique [6], and the site-symmetry method [3] in the fight of CRs. 
A typical procedure for constructing SALCs also is presented. 

2. Orbits 

Consider a molecule of (7-symmetry that consists of several sets (orbits) of 
equivalent atoms or ligands. Enumeration of such orbits has been done by 
Brester [10], Jahn and Teller [11], Boyle [12] and Fowler and Quinn [6] for most 
point groups. Each orbit (Oa) is usually characterized by the site-symmetry 
group (Ha) that stabilizes (or fixes) one site (A) of the orbit. This characteriza- 
tion can be accomplished without difficulty by using tables presented by Fowler 
and Quinn [6]. Ha for a non-center atom is shown to be one of Cl, C~, C,, or 
Cnv (n t>2) [12]; and several subsymmetries of G cannot be site-symmetry 
groups. There has been, however, no mathematical rationalization for this 
selection. The present section aims at providing such a selection within a more 
logical framework in terms of coset representations. 

2.1. Assignment of  a eoset representation to an orbit 

Suppose that a set of subgroups of a finite group (7 is defined as 

s s o  = {(71, (72 . . . . .  (Ts}, (1) 

each element of which is a representative of respective conjugate subgroups. The 
elements of the SSG are aligned in the order [(71[ ~< [(72[ ~<"" ~< [(Ts 1, wherein (71 
is an identity group and (Ts is equal to (7. The corresponding set of coset 
representations (CRs) [21], 

SCR = {(7(1(71), (7(1(7~) . . . . .  (7(/(7A}, (2) 

is a full list of transitive permutation representations of the group (7, where the 
representation (7(/(70 is a regular representation (RR) and the symbol (7(/(7~) 
denotes an identity representation. 

A coset representation (CR) is constructed algebraically for every subgroup 
((7i) by using a multiplication table of (7 and a coset decomposition of (7 by (71 
[22]. The symbol ((7(/(7~)) has been introduced to designate the latter fact. For 
example, Table 1 shows coset representations for Dza, in which each permutation 
is represented by a product of cycles. Such a CR acts originally on an orbit of 
cosets, but can be considered to govern an orbit of atoms or ligands. In this 
sense, an orbit governed by the CR G(G~) is referred to as an G(/G~) orbit. 
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The assignment of a CR to an orbit is performed by using a table of marks 
[23, 24]. Let Pa be an arbitrary permutation representation of G, so that PA acts 
on a set of points, 

A = {6~, 62 . . . . .  61al}. (3) 

Then PA can be expressed 

Pa = ~', ~,G(/G,) ( j  = 1, 2 , . . . ,  s). (4) 
i = l  

The multiplicities ~i's are obtained by solving the following equations: 

!aj = ~ ceim U ( j  = 1, 2 , . . . ,  s). (5) 
i = 1  

These equations can be expressed by matrices, 

F = EM,  (6) 

or  

wherein 

and 

E = F M - ' ,  (7) 

E = (~1~2 • " " o~,), (8) 

F = (#1#2"'" #,), (9) 

m "l 

r o l l  m 1 2  • . . mls ~ 

M =  21 m22 " '"  m2~ (lO) 
• • " " 

[. msl ms2 " " " ss 

The matrix (M) is a table of marks and M -  1 is its inverse; E is referred to as a 
multiplicity vector (MV) and F as a fixed-point vector (FPV). Such tables of 
marks play important roles in the present approach. Table 2 is constructed from 
the data of Table 1, where fixed points are counted for every subgroup [22]. 
Table 3 shows the inverse of the mark table for D2d, which is also useful to the 
application of Eq. (7). 

Tables 4 to 6 are other examples of mark tables. 

Table 2. Mark table of D2d 

c~ c~ c~ C & c~o a~ a ~  

D2d(/C 1 ) 8 0 0 0 0 0 0 0 
D2d(/C2) 4 4 0 0 0 0 0 0 
O2d(/C'2) 4 0 2 0 0 0 0 0 
D2d(/Cs) 4 0 0 -2 0 0 0 0 

D2d(/S4) 2 2 0 0 2 0 0 0 
D2d(/C2v ) 2 2 0 2 0 2 0 0 
D2d(/D2) 2 2 2 0 0 0 2 0 
D2a(/D2d) 1 1 1 1 1 1 1 1 
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Table 3. The inverse of  the mark  table for D2d 
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D2d(/Cl) Dza(/C2) Dza(/C'2) D2d(/C,) D2a(/C4) D2a(/C~) D2a(/C2) D2a(/O2a) 

C1 1/8 0 0 0 0 0 0 0 
C 2 - 1 / 8  I/4 0 0 0 0 0 0 
C~ - l /4 0 1/2 0 0 0 0 0 
C s - 1 / 4  0 0 1/2 0 0 0 0 
S 4 0 - -  1/4 0 0 1/2 0 0 0 
C2v 1/4 - 1/4 0 - 1/2 0 1/2 0 0 
D 2 1/4 - -  1/4 - -  1/2 0 0 0 1/2 0 

D2d 0 1/2 0 0 -- 1/2 -- 1/2 -- I/2 1 

Table 4. Mark table of  D 2 

G c: c~ c~ as 

D2(/Cl) 4 0 0 0 0 
D2(/C2) 2 2 0 0 0 
D2(/C'2) 2 0 2 0 0 
D~(/C'D 2 o o 2 o 
D2(/D2) 1 1 1 1 1 

Table 5. Mark table of  T a 

G c~ c~ G s, D2 c~ c~ D~, r r~ 

Ta(/CO 24 0 0 0 0 0 0 0 0 0 0 
Ta(/C2) 12 4 0 0 0 0 0 0 0 0 0 
Td(/C~) 12 0 2 0 0 0 0 0 0 0 0 
Td(/C3) 8 0 0 2 0 0 0 0 0 0 0 
Td(/S4) 6 2 0 0 2 0 0 0 0 0 0 
Ta(/D2) 6 6 0 0 0 6 0 0 0 0 0 
Ta(/C2~, ) 6 2 2 0 0 0 2 0 0 0 0 
Ta(/Cs~ ) 4 0 2 1 0 0 0 1 0 0 0 
Td(/D2d ) 3 3 1 0 1 3 1 0 1 0 0 
Td(/T) 2 2 0 2 0 2 0 0 0 2 0 
ra( /Ta)  1 1 1 1 1 1 1 1 1 1 1 

Table 6. Mark table for D3h point group 

C l C 2 C s C;  C 3 C2v Car Cah D 3 O3h 

D3h ( /C 1 ) 12 0 0 0 0 0 0 0 0 0 
D3h(/C2) 6 2 0 0 0 0 0 0 0 0 
D3h(/Cs) 6 0 2 0 0 0 0 0 0 0 
D3h(/C's) 6 0 0 6 0 0 0 0 0 0 
D3h(/C3) 4 0 0 0 4 0 0 0 0 0 
D3h(/C2v ) 3 1 1 3 0 1 0 0 0 0 
D3h(/C3~ ) 2 0 2 0 2 0 2 0 0 0 
D3h(/C3h) 2 0 0 2 2 0 0 2 0 0 
D3h(/D3) 2 2 0 0 2 0 0 0 1 0 
D3h(/D3h) 1 1 1 1 1 I 1 1 1 1 
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2.2. Regular body 

Table 1 indicates the correspondence between CRs of  the D2d group and 
Oa-notations [6] for orbits. By the inspection of  this table, there naturally 
emerges a question: Why are the orbits corresponding to D2d(/C2) etc. absent? 
In order to answer this question, it is necessary to explain the geometrical 
meaning of  a coset representation (CR) by introducing the concept of  a regular 
body. 

Let G be a finite point group of  order ]G I acting on a set of  iG[ points in a 
3D-space: 

AR={81,  82 . . . . .  81~ }. (11) 

Suppose that there is only one stabilizer of  the point (81) which is an identity 
group, i.e., G~1 = G ,  ={I}.  If  gt ( ~ 6 )  transforms the point 81 to 8~, we can 
obtain a coset decomposition represented by 

G = G6~g 1 + G61g 2 + "  "" + G61gla I 

= Glgl + Gig2 +" • • + GlglO 1. (12) 

Hence, each point 6i corresponds to the coset Glg~ (i.e., g~ itself) in one-to-one 
fashion. Since G(/G1) is the regular representation (RR),  d R defines the regular 
orbit about  81. We call this 3D-object (d R) a regular body. 

Let us consider a subset of  the regular body (dR), which belongs to a 
subgroup G; ( ~< 6). We call this set a block of  G~ symmetry or a G~-block. This 
selection is realized by considering a subduction of  the R R  [ 13], 

G(IG1) J, G, = ~ G,(IGi,), (13) 

where G~(/Gi,) is a regular representation of  the subgroup (7,.. This equation 
indicates that the regular body (A s) is divided into I l/l ;I blocks of  
symmetry, the sizes of  which are equal to IG~ I" We represent these blocks by the 
symbols, 

( D I ~  ( D 2 ~  . . . ~ ( -0r~  

where r = IGIIIGiI Since we can select an arbitrary block from these blocks, we 
examine (.o 1 as a representative case. Let us consider a cost decomposition of  G 
by Gi, 

G = Gig  I a t- G ig  2 + " "  -~- Gigr,  (14) 

where gl = L If we operate the representatives, {gl, g2, • • • , g r  }, onto the block 
o91, we obtain r imprimitive blocks, 

t21 = g, ~o, = o91, ~'~2 = g 2 ( O l  . . . . .  Ac~r = grog, " 

Since each Ok corresponds to the coset Gigk through gk in one-to-one fashion, the 
coset representation G(/Gi) based on Eq. (14) governs a set of  imprimitive 
blocks, 

~e~ : {~r~l ' ~ ' ~2 , " " " ,  ~e~r}" ( 1 5 )  
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Fig. 1. Imprimitive blocks in a 
regular body 

Figure 1 illustrates these blocks (Ok ; k = 1, 2 . . . .  , r), where we pay our attention 
to the relationship between G(/G~) and G(/G~). Since each of  the blocks (Ok) 
belongs to G~(/Gil), we arrive at 

Lemma 1 (site-symmetry in a regular body). Suppose that a regular body of G 
symmetry is subject to G(/C1). Then, the coset representation G(/G~) governs a Gi 
block that has a Gi(/Gil) orbit. 

Note that the G(/G~i) representation is an R R  of  Gi. 

2.3. A regular body for a subgroup 

Let us now consider a regular body which corresponds to Gi(/Gii). I f  an 
appropriate group Gj satisfies Gj ~< Gi ~< G, we can consider a subduction of  
Gi(/Gil) in terms of  

IG'IG , , G ,  (16) G,(IG,,) .!. = IGj l  J "  J " "  

According to this equation, the orbit (r%) governed by the RR(G~(/G~I)) is 
divided into r '  blocks, 

(-Dip, O)2p ,  • . . , (-Or'p, 

where r ' =  IG~ I/IGJl and p = 1, 2 . . . . .  r. Let us consider a coset decomposition, 

G~ = G/h~ + Gjh 2 + . . .  + Gjh,,, (17) 

where h 1 = L Then the same discussion as above holds for this case. I f  we 
consider roll only (i.e., p = 1), the set of  blocks 

~"~(i) = {~"~ i l ,  ~[~2i . . . . .  ~e'2r" 1 } (18) 
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is subject to a CR GI(/G:), where 

[211 = h1(011 = ¢o11, ~'~21=h2(D21,...,~'~r,l=hr,(Dr,1 . 

Note here that all of  these blocks belong to ~ symmetry. Figure 1 depicts the 
relationship between these blocks, where fl(l) represents a subdivision of  f21. 
Because a block encircled with a broken line is associated with [~(1) on the G(/GO 
orbit, and because f t  (1) is subject to Gt(/Gj), the encircled block is concluded to 
be subject to G~(/Gj). In other words, the coset representation G(/G~) governs a 
G:b lock  that has a G~(/G:) suborbit if Gj <~ G i <~ G. 

When we introduce Eq. (17) into Eq. (14), we can obtain 

G = Gjh,1 + Gjh12 + " "  + Gjh,r + 

G ih21 -4- Gjh22 + ' "  + Gjh2r + 

: + i + + i + 

¢Tjhr,, + Gjhr,2 + ' "  + 6:h,~,, 

where hqgp = hqp (p = 1, 2 . . . . .  r; q = 1, 2, .  

(19) 

. . ,  r'). This is a coset decomposi- 
tion of  G by Gj. I f  we transform o911 by 
q = 1, 2, . . . ,  r ')  to produce r'r blocks, 

means 

[ ~r~ll ~r'~12 • . . ~r~lr ] 

h =  ~"]21 ~r'~22 " ' "  [t-~2r 

~'~ "I ~'~r'2 " " " "r 

of  hqp ( p  = 1, 2 . . . . .  r; 

(20) 

where ~-~qp = hqpf911 (p = 1, 2 , . . . ,  r; q = 1, 2 . . . . .  r'), then this equation indi- 
cates the one-to-one correspondence between f2pq and the coset (Gjh~q) via hqp. 
Hence, the set of  blocks ~ is concluded to the subject to the CR (G(/Gj)). Note 
that fl(1) is identical with the first column of  ~ .  Since hqp¢.o I = hqgpOJ 1 -~ hq~'~p, the 
remaining p th  column of  ~ is associated with f2p (p = 1, 2 . . . . .  r). These 
discussions can be summarized by 

Lemma 2 (site-symmetry of  a G(/Gi) orbit having one suborbit). (a) I f  
G i <~. G i <- G, the coset representation G(/Gi) governs a Gi-block that has a G~(/Gj) 
suborbit. 
(b) The orbit that is produced by all o f  such blocks as equivalent to the Gi-block 
is subject to G(/Gj). 

This lemma describes the mode of  substitution in which a G~-block having a 
G~(/Gj) suborbit is introduced onto every point of  a G(/G~) orbit. Obviously, a 
similar discussion can generalize this lemma so it is applicable to the case in 
which the G~-block has a given set of  suborbits. Hence, we obtain 

Theorem 1 (site-symmetry of G(/G~) orbit having several suborbits). (a) I f  
Gj <<, Gi <<. {7, the coset representation G(/Gi) governs a Gi-block that has a set of  
suborbits represented by 

Y~ ~jC,(/a:), (21) 

where the summation is over a given set of  subgroups satisfying the above 
condition; and fly's are non-negative integers. 
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(b) The orbit that is produced by all of such blocks as equivalent to the Gi-block 
is subject to the CR represented by 

Z fljG(/Gj). (22) 
J 

The first proposition of this theorem means that an orbit (a set of equivalent 
atoms or ligands) appearing in a given molecule corresponds to a coset represen- 
tation, G(/Gi), in one-to-one fashion and that each member of the orbit belongs 
to a site-symmetry of G,.. This theorem affords mathematical foundations to the 
subduction of coset representation (SCR) notation [19] and to the concept of 
chirality fittingness [25]. 

Figure 2 illustrates orbits and CRs for the Ta group, in which a set of atoms 
marked with open circles in a molecule are the members of each orbit. The orbit 
(1) contains 24 hydrogen atoms, which construct a regular body of the Ta 
symmetry. This orbit is governed by RR (Td(/Cl)). The other orbits (2-5)  can 
be determined to correspond to the respective CRs. The assignment of each orbit 
to a coset representation is conducted easily as follows. Consider orbit (3) of Fig. 
2, the six-membered orbit of Td found in adamantane. When we use all the 
symmetry operations concerning every subsymmetry of Td on (3), we obtain an 
FPV: F = (6 2 2 0 0 0 2 0 0 0 0), the elements of which are aligned according to 
SSGra = {C1, C2, Cs, C 3, S4, D2, C2v, C3v, D2d, T, Td}. Since this vector is 
identical with the Td(/CEv) row of Table 5, we can conclude that the orbit (3) is 
subject to the CR Td(/C2v). 

Figure 2 also exemplifies the interrelation of these orbits, which has been 
shown generally in Fig. 1. The twelve methylene carbons of (1), each of which is 
attached by a pair of hydrogens selected from the 24 hydrogen atoms of the 
Td (/CI) orbit, construct a Td(/Cs) orbit. Note that this orbit is equivalent to the 
orbit (2) in a geometrical sense. This fact is an example of Lemma l, since each 
pair of  hydrogens in the methylene group is considered to be a Cs-block 
governed by C~(/C1). 

1 Td(/C 1) 2 Td(/C s) 3 Td(/C2v) 

Z,. Td(/C3v ) 5 Td(/T d) Fig. 2. Orbits of the T d 
point group 
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These methylene carbons (belonging to the 12-membered Td(/Cs) orbit) 
are, in turn, divided into six pairs (C2v-blocks) if every cyclopropane ring 
is taken into consideration. Each pair in the cyclopropane ring is considered to 
link to the remaining cyclopropane carbon at each spiro-position. Then, the 
latter six carbon atoms at the spiro-positions are concluded to belong to a 
Td(/C2v) orbit, which is equivalent to the orbit (3). This fact exemplifies Lemma 
2, since the pair in such a cyclopropane ring is regarded as a C2o-block having 
a C2~(/Cs) orbit. 

From an alternative point of view, each of the six cyclopropane rings as a 
whole can be considered to be a C2~-block that contains four hydrogen atoms 
(C2~(/C1)), two carbon atoms (C2~(/~)) and one carbon atom (C2~(/C2~)). Six 
such blocks construct a Td(/C2~) orbit. This fact verifies Theorem 1. The 
relationship between the 24 hydrogens (Td(/CI)) and the 4 bridgehead carbons 
(Ta(/C3~)) can be also recognized by inspection. 

It is worthwhile mentioning the differences between our approach and the 
Fowler-Quinn one [6]. Fowler and Quinn consider that each orbit (Oa) is 
characterized by a site-symmetry group, Ha, a subgroup of G which describes 
the symmetry of a given molecule, and that the reducible representation of  G 
generated by a a function on each member of the orbit is a permutation 
representation. Thus, their concept of orbit, site-symmetry, and permutation 
representation are presented rather separately. On the other hand, our approach 
indicates that an orbit is governed by a coset representation G(/H) which comes 
from a coset decomposition of G by a subgroup H. The assignment of a CR to 
such an orbit can be algebraically accomplished by means of a mark table. 
Moreover, each fragment of the orbit belongs to the H site-symmetry which 
appears in the symbol G(/I1). Hence, our concepts of orbit, site-symmetry, and 
CR are closely unified in terms of such a key concept the CR. 

2.4. Selection rules for coset representations 

Lemmas 1 and 2 clarify whether a coset representation is allowed or forbidden 
to govern a set of points as a 3D object. 

Theorem 2 (forbidden CRs). The coset representation G(/Gj) is forbidden, 
(a) if Gj ( < G') has Sn (n >>, 2) as a symmetry operation, 
(b) if Gj ( < G) is one of polyhedral groups (1, 0 and 1) or of dihedral groups (Dn), 
(c) if Gj ( < Gi <~ G) is C~(n ~> 2) and G~ ( <~ G) is Cnv , or 
(d) if Gj ( < Gi <<. G) is C,<v) (n >~ 2) and G, ( <<. G) is Cm(v). 
The rule (a) can be proven as follows. Consider a regular body of G symmetry. 
Lemma 1 indicates that the CR G(/Gj) governs t ~ =  {f21,0 2 . . . . .  Or}, each 
element of which has a Gj (/Gjl) orbit. The problem may be restated: Can every 
element correspond to a different point at a general position or not? The 
condition described in (a) requires that the center of each Gj object 
(t2p; p = 1, 2 . . . . .  or r) is identical with the origin of the G-body. This means 
that none of the Gj objects corresponds to points at general positions. Hence, 
G(/Gj) is forbidden. If  Gj is equal to G, then G(/Gj) is allowed to govern the 
origin as an orbit. Obviously, the same restriction gives rise to the rule (b). 

If  (c) is true, Lemma 2 indicates that I~ ~) = {f2~1, t2~2} is subject to C~v(/C~). 
The symmetries of f2~, and f2~2 are both Cn. In addition, they are antipodal with 
each other. This means the centers of the two blocks are identical with each 
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other. Since the total effect is represented by the CR G(IC,) according to Lemma 
2, the CR G(/C,) is forbidden. 

If (d) holds, Lemma 2 shows that G(/Cm~) governs tl,  that Cm~(/Cn~) governs 
11 °), and that tT,(/C,,~) governs ~.  The symmetry of t2] ( e f l )  is C,n~, while that 
of subblocks (flu etc. e f l  °)) is C~o. This means that the center of the former 
block is identical with those of the latter subblocks. Hence, the CR G(/C,o) is 
forbidden. The same situation holds for the case of (7, and Cm. 

In order to illustrate Theorem 2, consider the set of coset representations for 
Ta described in Table 5. The rule (a) of Theorem 2 forbids Ta(/S4) and Ta(/D2d). 
The rule (b) indicates the absence of Td(/l)2) and Td(/T ). The rule (c) does not 
allow Td(/C2) and Td(/Cs). There are no cases avoided by the rule (d). As a 
result, there remain allowed five CRs: Td/(CI), Td(/C~), Td(/C2~), Td(/Cs~), and 
Td(/Td). Figure 2 depicts the allowed CRs for the Ta group. 

Application of Theorem 2 to /)2d gives 1)2d(/C2) (rule c), 1)2d(/S4) (rule a), 
and D2d(/D2) (rule b) as forbidden CRs. The remaining CRs are allowed: 
D2d(/CO, D2d(/C'2), D2d(/C,), D2d(/C2~), and D2d(/D2a). This result is identical 
with that collected in Table 1. The following example illustrates a more algebraic 
method than the assignments described for Fig. 2. 

Example I (orbits of allene (6)). 

H . . . . .  C_._ C ~ c ~ H  
H ~ ~ ~ H  

Allene (6) has D2d symmetry and is composed of 3 carbon and 4 hydrogen 
atoms. When we operate on (6) with the symmetry operations of each subsym- 
metry of the D2d and count fixed points, we obtain an FPV: F = ( 7 3 1 5 1 3 1 1 )  
according to Eq. (9). The vector is then introduced into Eq. (7) [or equivalently 
Eqs. (5) or (6)]. The use of Table 3 as n -1 affords an MV: E = ( 0 0 0 1 0 1 0 1 )  
(or solutions: ~c. = 1, ac- = 1 and ~a2a = 1). This vector means that there is a 
D2d(/Cs) orbit, a D2d(/C2v~ orbit, and a D2d(/D2d) orbit. These are determined by 
inspection to be the 4 hydrogens; the 2 carbons; and 1 central carbon. At the 
same time, we conclude that the site symmetries of the D2a(/Cs), D2d(/C2~,), and 
D2d(/D2d ) orbits are Cs, C2~, and D2d, respectively. Equation (4) for this case is 
represented by 

(23) 

This situation is denoted by the SCR notation: D2d[/Cs(H4);/C2~(C2);/D2a(C)] 
[19]. 

In terms of Theorem 2, we can determine the allowance of CRs for every 
point group. Note that this theorem holds only for an orbit containing atoms or 
ligands (not for an orbit containing bonds or faces). Tables 8 to 10 indicate 
allowed CRs for D2, D2d, Td and Dsh point groups. 
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2.5. Derivation of Brester's equations and of the k-value equations 
o f framework groups 

Equation (4) provides a partition of A into ~ =  ] ~i orbits, 

Ai~ ( i = l , . . . , s ; ~ = l , 2  . . . .  ,~i), 

where ~i of the orbits are subject to G(/Gi). Since the size of an orbit ([A~, 1) is 
equal to IGI/IGil, then 

IAI -- Z  <,lalllC,,I, (24) 
i = l  

Theorem 2 indicates that 0t i is equal to 0 for a forbidden (7,.. Hence, Eq. (24) 
contains the Brester equation [10] and an equivalent framework-group equation 
[20] as special cases, although they are different in their expficit forms. In order 
to illustrate this equivalency, we here refer to the Ta symmetry as an example. 
Since [rd[/[Cl[ =24,  IT, I/IC21 = 12, and so on, Eq. (24) can be written as 

IAI = 24Ctc~ + 12~c 2 + 12~c, + 8~c3 + 6~S 4 -[- 6~az + 6Gtc2v 

+ 4~c3v + 3~a~ + 2~r + ~ra- (25) 

The above discussion on the allowability of CRs for the Ta group indicates that 

~c2=0,  ~c3=0,  ~s4=0,  ~D2=0, ~tD~a=0, a n d ~ r = 0 ,  

for the forbidden CRs. With respect to the allowed CRs, we denote the 
corresponding terms as 

~cl = m  = k l ,  Ctcs =ma=k2, arc2 ~ = m 2 = k 3 ,  

~c3v = m3 = k4, and ~ra = m0 = ks. 

Thereby, Eq. (25) is converted into 

N = 24m + 12m d q- 6m2 + 4m3 q- too, (26) 

where N = [A [, and into 

S = 24kl + 12k2 + 6k 3 + 4k4 + ks, (27) 

where X = I A [. These equations are identical with those derived alternatively by 
Brester's method [10] and the framework-group method [20]. 

For  practical purposes, however, it is unnecessary to consider such allow- 
ability of CRs in an explicit fashion. Thus, Theorem 2 is satisfied spontaneously 
upon solving Eqs. (5) to (7). For example, Eq. (23) derived in Example 1 
proves to satisfy the selection rule of Theorem 2. According to this equation, we 
obtain 

7 = 4~cs + 20tc2o + ~02~, (28) 

where ~cs = 1, ~c~ = 1 and ~aza = 1. Although this equation is the counter- 
part of the Brester expression of this case, the present approach obviously 
affords more detailed information. Since the solution of Eq. (5) or the related 
equations is quite easy, the present approach has several advantages over the 
Brester approach, as well as over the framework-group approach. 
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3. Symmetry adapted functions 

3.2. Character tables for coset representations 

A reducible representation of G by ligand a-orbital combinations is called a 
permutation representation of G. The character of this representation (a-charac- 
ter) is important in the construction of SALCs. The a-character has been 
obtained by several methods: (a) inspecting the effect of symmetry orbitals on 
the set of points in the orbit [1], (b) using the matching technique [6-8], and so 
on. The discussion in the preceding section indicates that the a-representation is 
equivalent to a coset representation, which is formulated originally as acting on 
a set of cosets. This fact affords an alternative method of calculating a-charac- 
ters; these are equal to the characters of coset representations. 

We have so far treated the CR as a permutation representation; however, 
they can be manipulated in the form of a matrix representation. Suppose a 
permutation of the CR is represented by 

( 1  2 . - .  k . . -  r )  (29) 
G(tGi)g= a, a2 "'" ak " ' "  a, ' 

where g e G and G(/Gi)g ~ G(/Gi). We then construct a matrix in which the 
intersecting dement of the ak th column and the kth row is unit and others of the 
akth column and of the kth row are all zero, i.e., 

A ~(/~;)(g) = 

The matrix representation: 

• ' ° ~ ° ' "  

0 

0 

0 . - .  0 1 0 --- 0 

0 

0 

(30) 

A Gqa~) = {Aa(/G~)(g)[Vg ~ G} (31) 

corresponds to the CR (G(/GI)) in one-to-one fashion. Since any coset represen- 
tation is available as a kind of permutation representation by examining a coset 
decomposition as shown in Table 1, the corresponding matrix (Eq. 31) is easily 
constructed. 

The trace of each matrix (Eq. 30) of A a(/G,) constructs the corresponding 
a-character, which is represented by yc~a~). Obviously, the trace of the matrix 
(Eq. 30) is equal to the number of fixed points during the permutation (Eq. 29). 
Thereby, we can calculate the character yc~Gp This calculation is easy if such a 
permutation is represented in the form of a product of cycles as shown in Table 
1. From the data of Table 1, we obtain the character table of CRs for the D2a 
group (Table 7). Table 7 also contains allowed CRs marked by an asterisk as 
well as irreducible representations (IR) for every CR. Similarly, we construct 
several character tables of CRs (Tables 8 to 10). 
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Table 7. Character table o f  CRs for D2d 

S. Fujita 

I 2S 4 C 2 2C~ 20" d Allowed IR 

D2d(/Ct) 8 0 0 0 0 * 
D2d(/C2) 4 0 4 0 0 
D2d(/C'2) 4 0 0 2 0 * 
D2d(/Cs) 4 0 0 0 2 * 
D2d(/S4) 2 2 2 0 0 
D2a(/C2v ) 2 0 2 0 2 * 
D2d(/D2) 2 0 2 2 0 
D2d(/D2d ) 1 1 1 1 1 * 

A + A 2 + B I + B 2 + 2 E  
A + A 2 + E  
A + B t + E  
.4 + B 2 + E  
.4 + A  2 
A + B  2 
A + B  x 
A 

Table 8. Character table of  CRs for D 2 

I C2(z) C2(x) Cz(y) Allowed IR  

D2(/Ct) 4 0 0 0 * 
D2(/C2) 2 2 0 0 * 
D2(/C'2) 2 0 2 0 * 
D2(/C'~) 2 0 0 2 * 
D2(/D2) 1 1 1 1 * 

A + B I + B 2 + B  3 
A + B  t 
`4-F B 2 
A + B 3  
A 

Table 9. Character table o f  CRs for T a 

I 86'3 3C2 6S4 6tra Allowed IR  

Td(C1) 24 0 0 0 0 * 
Td(C2) 12 0 4 0 0 
Td(C~) 12 0 0 0 2 * 
r , ( c 3 )  8 2 0 0 0 
Td(S4) 6 0 2 2 0 
Td(D2) 6 0 6 0 0 
Td(C2v) 6 0 2 0 2 * 
Td(C3v ) 4 1 0 0 2 * 
Td(D2d ) 3 0 3 1 1 
rd (T  ) 2 2 2 0 0 
Td(Td) 1 1 1 1 1 * 

Table 10. Character table of  CRs for D3h point group 

I 2C 3 3C 2 tr h 2S 3 3tr v Allowed IR 

Al + `42 + 2E + 3Tl + 3T2 
`41 +`42 + 2R + Tl + T2 
At + E + TI + 2T2 
AI + A2 + TI + T2 
` 4 t + E +  T1 
A t + A 2 + 2E 
A I + E +  T2 
A t + T 2  
A t + E  
At + A2 
`41 

D3h(/C1) 12 0 0 0 0 0 * 
D3n(/C2) 6 0 2 0 0 0 
Oah(/C~) 6 0 0 0 0 2 * 
D3h(/C'~) 6 0 0 6 0 0 * 
D3h(/C3) 4 4 0 0 0 0 
D3h(/C2v ) 3 0 1 3 0 1 * 
D3h(/Cav ) 2 2 0 2 2 0 * 
D3h(/C3h ) 2 2 0 2 2 0 
D3h(/D3) 2 2 2 0 0 0 
D3h(/D3h ) 1 1 1 1 1 1 * 

A; + A'2 + 2E" + A'; + A'~ + 2E" 
A ~ + E ' + A ~ + E "  
A ~ + E'  + `4'~ + E" 
A; + A ~ + 2 E '  
A~ + A;  + A'; + A'~ 
A'I+ E'  
A ; + `4'; 
.4", + `4'~ 
`4 ; + A'; 
.4; 
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A mark table for a CR is closely related to a character table for the same 
CR. They are both concerned with invariants on symmetry operations. Compare 
Table 2 with Table 7; and Tables 4 to 6 with Table 8 to 10. As a result, we can 
assign a CR to an orbit by using a character table in place of the corresponding 
mark table. This procedure is illustrated as follows. 

Example 2 (orbits and onset representations appearing in a trigonal bipyramid 
(7)). 

1 3 

A trigonal bipyramid (7) has 5 positions, which are divided into two orbits, 
A1 = {1, 2, 3} and Az = {4, 5}. Each symmetry operation of D3h fixes several 
positions of A~, the number of which is counted by inspection, being 3 for L 0 
for the two operations concerning a C3 axis, 1 for each of the three C2 axes, 3 
for o" h, 0 for the two operations concerning a $3 axis, and 1 for the three o., 
planes. These values are identical with those colleced in the D3h(/C2~) row of 
Table 10. Hence, the A1 orbit is subject to the CR D3h(/C2~). This assignment, at 
the same time, allows us to conclude that each member of this orbit belongs to 
the site-symmetry of C2~. In a similar way, the A2 orbit is concluded to be 
governed by the CR D3h(/C3v) and to have a C3v site-symmetry. This method is 
effective if each orbit can be recognized by inspection. Compare this feature with 
that of the method described in Example 1. 

3.2. A procedure for obtaining SALCs 

In the preceding section, o.-characters are given in the form of character tables of 
CRs. We can thereby obtain re- and 6-representations in the light of  the method 
presented by Quinn et al. [6-8] or of the TSH theory [5, 9]. We here follow the 
standard method [ 1] except in the calculation of characters. 

We have clarified the relationship between the CR G(/Gi) on f~ and the RR 
G(/G~) on A. The CR and RR are here manipulated in the form of matrix 
representations rather than that of  permutation representations. Let B ~, be a 
matrix representation of Gi. Suppose that gq and gp are selected from the 
transversal in Eq. (14). We define Dqp(g) using Bai(g) ~ B ai as being 

Dqp(g) -= Ba~(gqgg~'), (32) 

where Dqp(g) = 0 if gqgg~ q~ Gi. Then, a matrix for an induced representation is 
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expressed by 

D1,(g) D12(g) ' ' '  

Ba(g)= D21.(g) D22(g). " ' "  

Drl(g) Dr2(g) " ' "  

This matrix is rewritten according to Eq. 30 to be 

D'r(g) 1 
D:~.(g) [ " 

D,.r'+ J 
(33) 

Ba(g) = 
k 0 

r 

" ' "  0 

ak 

0 

0 

Dkak . . .  0 
(34) 

which constructs an induced representation, 

B ~ = {Ba(g) I Vg e a } .  (35) 

A non-zero matrix appears once in every row and once in every column. 
Moreover, as shown in Eq. (34), a non-zero Dqp(g) in Eq. (32) corresponds to 
the unit at the intersection of the qth ( = kth) row and the pth  ( = akth) column 
in Eq. (30). If  the representation B ai is the RR of G~, Eq. (35) is an alternative 
form of the RR. 

The character of the representation B a is obtained to be 

Fa(g) = ~ tr(Dpp(g)), (36) 
p=l  

wherein tr(Dpp(g)) is the trace of Dpp(g). Note that Dp~(g) = 0 if gpgg~ 1 q~ Gi. If  
any conjugate class of 6l is not divided into two or more conjugate classes of Gi, 
any non-zero tr(Dpp(g)) is equal to )~ai(g) which is a character of B ai. Because of 
the correspondence between Eq. (30) and Eq. (34) (or Eq. 33), the number of 
n o n - z e r o  Opp is equal to the character of A a(/a' ), which is represented by yoga, ). 
Thereby, Eq. (36) can be converted into a more convenient form: 

Fa(g) = ?a(/a,)(g) x •a,(g), (37) 

where Xa~(g) is equal to 0 if g ¢ G~. The B a representation can be reduced into 
irreducible representations by applying the orthogonality theorem [1] to the 
character (Fa(g)). 

In the following paragraphs, a systematic application of the present method 
will be outlined stepwise. We will construct the molecular orbitals starting from 
the p-type atomic orbitals on the ligands in a tetrahedral complex (Fig. 3). 

Step 1 is the recognition of orbits in this complex (8). This molecule is 
determined to have two orbits, A1 = {1, 2, 3, 4} and A2 = {5}. We only take the 
A l orbit into consideration for simplicity of discussion. 
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z 

Px 

3 

/ 
=--y 

2 px 

Py 

Fig. 3. Orbitals of a tetrahedral 
complex (8) 

In step 2, we assign a CR to this orbit. Thus, the FPV of A 1 is obtained to 
be F = (4 0 2 1 0 0 0 1 0 0 0), which is identical to the Td(/C3v ) row of the mark 
table for Td (Table 5). This means that the A 1 orbit is subject to the CR 
Td(/C3v). This step can be effected alternatively in an algebraic fashion by using 
Eq. (6) (see Example 1). It should be emphasized that this assignment sponta- 
neously determines the site-symmetry of  each member of  A, as being C3~. 

Step 3 is an application of Eq. (37) to this case. First, we consider p~ orbitals 
of the four ligand positions. The character table of the CR (Table 9) affords the 
7 ra (/c3o) values. According to the C3~ site-symmetry, we select an A~ representa- 
tion for the p= orbit from a character table for the C3, point group [1]. Thereby, 
we calculate the character of this case. 

I 8C3 3C2 6S4 6aa 

yra(/c3~) 4 1 0 0 2 
A1 for C3~ 1 1 (0) (0) 1 

Fp,, 4 1 0 0 2 

The character Fp~ can be reduced by means of a character table of the Ta point 
group [1]. It follows that 

Fpa = A1 q- T2. (38) 

Obviously, this result is identical to that of Table 9 which is obtained by using 
the character of Ta(/C3~ ) itself. Since this relationship holds for general cases, 
Tables 8 to 10 list such reductions, as pre-estimated from the characters of CRs. 

Since Px and py are degenerated forming an E representation under the C3v 
site-symmetry, step 3 is expressed by 

I 8C3 3C2 6Sa 6aa 

~/Ta (/C3v) 4 1 0 0 2 
E for C3~ 2 - 1 (0) (0) 0 

8 - 1  0 0 0 



62 S. Fujita 

This means that 

Fp,~ = E + T1 + T2. (39) 

Step 4 is the construction of SALC(s) for each irreducible representation. 
This is accomplished by using projection operators [1]. For example, wecon-  
struct SALCs concerning T2 or Fp~. Projection operators for this irreducible 
representation are calculated as follows: 

/~(r2) = (3/24) {I + C2(1) - C2(2) - C2(3) - O'd(2) --  O'd(4) -[- S4(1) 4- S~(1) }, (40)  11 

/3~2) = (3/24){• - C2(1) -3 I- C2(2) - C2(3) - O'd(3) --  O'd(5) "-]- S4(2) "Jf- $34(2)} (41)  

and 

/3(r2) = (3/24){I - C20) -- C2(2) - C2(3)  - 0"d0)  - -  0"d(6) -~- S4(3)  "31- S43(3)} .  (43) 33 

When we apply these projection operators on the pfz 1) orbit, we obtain (unnor- 
malized): 

p ~ 2 ) . o )  = p~z 1) _ p<2) + p<3) _ p<p, (44)  11 Fz 

p(T2) n(1) = ?(zl) ..~ p(2) .31_ p(3) --  p(4) (45)  22 F z  

and 

p~T2)p(zl ) = p(z l) -- p(z 2) -- p(z 3) + p(4). (46) 

The SALCs are identical with those reported previously [I]. SALCs for the other 
irreducible representations can be obtained in a similar way. 

4. Conclusion 

The correspondence between an orbit of a given molecule and a coset represen- 
tation G(/Gi) was clarified in terms of a regular body. This correspondence 
affords a general equation that contains Brester's equations and k-value equa- 
tions of framework groups as special cases. In addition, a G(/G~) orbit was 
proved to have a Gi site-symmetry. The method of assigning a CR to an orbit by 
using a mark table or a character table of CRs also is described. The assigned 
CR is a basis for a general procedure of obtaining symmetry adapted linear 
combinations of atomic orbitals. 
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